

Purview

Purview Design Document

Please direct all communication to: ml25@princeton.edu

Gordon Chu
Yannis Karakozis

Matthew Li

gachu@princeton.edu
ick@princeton.edu

ml25@princeton.edu

¶ Section 1. Overview

Purview aspires to become the anonymous social platform for short-form video
content-sharing for university students and high schoolers. It allows users to create
video content associated with the location of the user and specific tags the user selects.
All videos are up to 10 seconds long and get automatically removed from public view
after 3 days.

The videos produced are viewable by all users in the nearby area, who can upvote or
downvote each video. Videos can be searched by tags and they are presented in
descending order of net score (upvotes - downvotes). Purview also provides an
automatic filtering functionality that filters out videos that receive above a threshold level
of downvotes to ensure the content presented is not offensive or inappropriate.

Users have access to all their current active videos, as well as their top three most
voted posts of all time. The user is also presented with the Hall of Fame of their area,
which includes the five most upvoted active videos produced in the user’s region.

¶ Section 2. Requirements and Target Audiences

Our generation's obsession with social media is unparalleled -- there seems to be an
app for just about anything you could think of, each of which has firmly cemented
themselves within social lives of people around the world. Want to share a status? Use
Facebook. Want to share a picture with your friends? There's Instagram. Want to share
a picture with your friends but only for 10 seconds? Snapchat. These applications are all
identical in essence: users create and share content, but simply meet this goal with
different approaches. These examples just go to show that even small nuances in
functionality can still draw immense interest.

mailto:ick@princeton.edu
mailto:ml25@princeton.edu
mailto:gachu@princeton.edu
mailto:ml25@princeton.edu

Purview

There is also another feature of some social media applications that has become quite
popular among university students and high schoolers: anonymity. Most notably, the
location-based social network known as Yik Yak quickly gained popularity within
university campuses around the nation simply by appending this concept to an
otherwise plain post-sharing application. Combining anonymity with automatic content
filtering in the form of upvotes and downvotes, Yik Yak eventually became a popular
source of student-generated content -- until it began enforcing usage of identity. The fall
of Yik Yak presents to us the opportunity of creating a new application that takes
advantages what Yik Yak had done right.

So where does Purview come in? What makes Purview different from currently popular
apps is its unique mixture of the various successful elements of other applications.
Given that anonymous social applications are extremely popular among university
students and high schoolers and given the obsession of those demographics with
Snapchat, Purview is just the app these demographics would use. It combines the
anonymity of Yik Yak and the visual focus of the Snapchat Stories features, both of
which are extremely popular among the target user base. It appeals to the obsession of
millennials with personal story sharing, and enables them to get informed about what is
going on, while also guaranteeing their privacy.

As none of the key elements of our application are novel by any means, it is not
unimaginable that apps with a similar mix of these features have already been
attempted. Indeed, there is an app called Panama developed in 2015 that has almost
the exact same features. However, the fact that it has not become viral after one year
and a half from deployment allows us to not consider it an 'successful solution'.
Therefore, we have a good chance of introducing this application as a fresh platform for
private anonymous video-sharing. To some, the failure of Panama may cast doubts on
the growth potential of Purview, but with our focus on university students and the
advantage of being based at Princeton, a strategy that starts by developing school-wide
prevalence could allow us to generate sufficient initial traffic to continue expanding.

Purview

¶ Section 3. Functionality

This section delineates the two typical use case scenarios of Purview: 1) a user making
a video post, 2) a user viewing video post feeds. Both use cases start as follows:

A user loads Purview and logs in automatically to their account (or signs up by using
their email and by picking a password for their account if they open the application for
for the first time). The user then is transferred to the landing screen, which is the video
feed of their area. At the top of the screen, there is a search bar. At the bottom of the
screen, the user is presented with a Navigation tab of three buttons: “Post”, “My Feed”,
“My Profile”. The “My Feed” button is highlighted, indicating the user is at the screen of
the feed of his area.

3.1 Use Case 1: User Posting a Video - Cindy
Cindy taps the “Post” Button and is transferred to the camera interface. By clicking at
the button at the bottom of the screen, she starts recording. After seven seconds, she
taps the button again and stop recording. The replay of her video comes up. She
reviews the replay of the video and decides she does not like the result. Thus, she
cancels the recording and re-records. This time she does not tap the stop button before
the ten seconds have elapsed, so the camera stops recording automatically after 10
seconds.

Cindy is satisfied with her latest recording. She types a tag at the text field that has
popped up at the middle of the screen. While she is typing the tag, popular tags in the
area appear below the text field in the form of a dropdown menu. Cindy fancies the tag
“TI” and selects that one. She completes the post by clicking the “Post” button. A
message that her post has been made successfully pops up, along with the buttons
“View ‘TI’ Videos”, “Post Again” and “My Profile”.

Cindy clicks on the “My Profile” button. Her account screen comes up. There, she sees
the video she just posted at the top of the “My Active Videos” list and also at the second
cell of the “My Top 3” list. Each entry is a table field comprised of the video thumbnail,
the time the video was posted and the video’s net score. Her video has already gotten
net 10 upvotes. She clicks on the thumbnail of her most recent recording and views it
again. After the video stops playing, she is returned to the “My Profile” screen. Satisfied
with her most recent creation, Cindy closes Purview and goes back to partying
responsibly at TI.

Purview

3.2 Use Case 1: User Video Post Feeds - Bob
Bob types at the search bar field the tag videos of which he would like to view. While he
is typing, popular tags in the nearby area appear below the text field in the form of a
dropdown menu. Bob is curious what is going on at “TI” this Saturday night and selects
that one.

Bob is presented with the feed of the “TI” tag. The videos are presented in descending
order of their score, with the ones of the best score being presented at the top. Each
entry is a table field comprised of the video thumbnail, the time the video was posted
and the video’s net score.

Bob selects the top video. The video expands and is played in full-screen mode. Bob
enjoys the full 10 seconds of a guy chugging a bottle of orange juice at TI. After the
video is completed, Bob is automatically returned to the “TI” feed screen. He upvotes
the video and the score of the video is updated to +1 of its current score in real time.

Bob then clicks the “Back” arrow at the top of the screen and returns to the main feed.
He scrolls down and clicks on the fourth video on the list. Bob quickly realizes this video
is a recording of the same exact scene. Because he does not want to waste time
re-watching this video as he has to finish Assignment 5 of COS333 which is due in 45
minutes, Bob taps on his screen while the video is playing. The video stops and Bob is
returned to the main feed screen.

Feeling the urgent need to write more test cases for the COS 333 assignment, Bob
closes Purview and goes back to coding.

3.3 Non-Goals
This version will not support the following features:

● Changing and redeeming passwords
● Playing music from any music streaming application, while recording.

Purview

¶ Section 4. Design

4.1 Three-tiered Design
The design will follow a three-tiered architecture consisting of a front-end mobile
application, back-end web server, and persistent database in order to implement the
desired functionality described in the previous section.

4.2 Client/Server Interface
The client-facing interface provided by the web server will be a RESTful API exposing
the Videos and Users services. API keys will be used for logging and authentication to
the API.

4.2.a Videos API
The Videos API will allow users to search, play, upload, and edit videos limited to
their geolocation. These features will be accomplished via the HTTP verbs GET,
POST, PUT, PATCH, and DELETE and JSONified data. Below are a couple
sample requests and their results.

Search through all videos ordered by upvotes

Query Strings

● lat - latitude
● long - longitude
● tag - the tag you wish to filter on, may occur multiple

times in query string if multiple tags filtered on
● limit - number of results to be returned
● offset - how many results to skip

* note: the video objects returned by this query will not have the video inside
them, but a thumbnail instead, in order to minimize processing time and
response sizes. If rendering the video is desired, a separate GET request to the
Videos API is necessary (see below).

Purview

Request a video with a given id

Upload a video

Purview

4.2.b Users API
Find information on a specific user*, **

* note: if the authentication token shows that the user making this request is not
the user whose user id is in the url string, a limited subset of this information is
returned - only user_id, username, score, and achievements
** note: the video objects returned do not store the entire videos, only thumbnails
(see the Videos API for an explanation)

Create a new user*

* note: validation will be performed both client and server-side.

4.3 Server/Database Interface
The database will persistently store all the data regarding users and videos. Videos will
be deleted 3 days after being uploaded. The database will respond to queries in the
SQL format from the server only. The database will not be publically available.

Purview

4.4 A likely implementation
Now that a reference architecture and its interfaces are established, the following
selection of technologies has been chosen to implement them:

Tier/Responsibility Technology Framework

Mobile application JavaScript React Native 2.0.1

Web server Python Flask, SQLAlchemy

Database MySQL/Postgres --

Protocol TCP --

The mobile application will be coded using React Native for portability. Research shows
that among similar applications (e.g. SnapChat, YikYak, Instagram), Python is a
commonality for the web server. Since the back-end fetches data from the database
and returns it without much processing, the lightweight Flask library will suffice (as
opposed to the hammer that is Django). For the database, the application data can be
modeled well relationally, and therefore SQL suits this need aptly. Finally, even though
our application will be sending videos around quite often, TCP was chosen over UDP as
a protocol because (i) each individual video will be fairly short (<10 seconds) and (ii)
there is evidence that video over TCP can work if pre-fetching is done properly (e.g.
YouTube).

Below is the final implementation architecture with specific technologies filled in.

https://www.quora.com/What-is-the-reason-behind-Youtube-using-TCP-and-not-UDP

Purview

¶ Section 5. Timeline

Due Date Feature/Milestone Front-end Work Back-end Work

3/24/17 End-to-end connectivity
with API (dummy data)

 ● Set up Flask app
● Set up Flask-autodoc
● Set up Flask-testing

3/24/17 Deploy site ● Code up
project status
page

● Acquire domain name
and hosting

3/24/17 User creation and user
persistence (including
auth)

● Login flow
● Sign up flow
● Landing page

stub
● Update status

page

● Define User schema
● Set up FlaskAuth on all

API calls
● Store and return actual

data for Users API calls

3/31/17 Video upload ● Integrate
camera

● Update status
page

● Define Video schema
● Implement POST

Videos API call (store
data)

3/31/17 Video search ● Search box
● Search results

display
● Update status

page

● Implement GET Videos
API call

4/7/17 Voting system ● Thumbs
up/thumbs
down on each
video

● Update status
page

● Implement PUT/PATCH
Videos API calls

● Implement
safe-search/results

4/7/17 Hall of fame ● Hall of fame
page hooked
up to API calls

● User can see
top 3 videos
and all active
videos

● Update status
page

● Implement hall of fame
API calls

● Implement top 3 videos
per user

4/14/17 Slippage time ● Documentation
● Testing

● Documentation
● Testing

4/14/17 Prototype ● Prepare for
demo

● Prepare for demo

Purview

● Update status
page

4/28/17 Slippage time ● Incorporate
feedback from
prototype
session

● Documentation
● Intuition testing

with users

● Incorporate feedback
from prototype session

● Documentation
● Intuition testing with

users

4/28/17 Alpha phase ● Update status
page

5/5/17 Beta phase ● Update status
page

5/14/17 Project complete ● Update status
page

¶ Section 6. Risks and Outcomes

6.1 Risks from Division of Labor
Due to our team’s distribution of experience between the different components of the
project (i.e. some members have mostly front-end experience, while others mostly
back-end experience), the division of labor will also generally adhere to the three-tier
architectural divisions. As such, potential risks and delays may arise from the
communication between developers of different components.

For example, delays could arise from inconsistencies in the type and format of requests
and responses sent and received between components; however, such delays should
not occur given proper planning. More plausible setbacks could originate from issues
related to each team member’s lack of experience with unfamiliar components of the
project, such as what can be feasibly implemented within other components, as well as
the relative difficulty and time needed to be accomplished. Such misunderstandings can
cause difficulties in assigning project-wide feature deadlines and milestones.

6.2 Potential Technology Delays
Although our team has collective experience in developing in JavaScript with React, as
well as in mobile app development, React Native represents new territory for us. As
such, we do not yet have a comprehensive grasp of what can be easily implemented
with this technology. Therefore, some development time should be allocated to probing

Purview

the specifics of this technology. Despite these potential unknowns, we are confident in
this technology for the front-end due to its extensive documentation and the well-known
applications that have already been built on it. If for some reason this approach is not
viable, then we can always switch to the native approach using Swift and Xcode for
development. This backup plan would sacrifice the portability of our project, but assures
our capability to implement the application.

Specific to iOS development, only one member of the team owns a Mac, and only two
of the three own iPhones. This would cause certain limitations in development,
simulation, and testing of the front-end component. However, since the front-end
specialist is the owner of the Mac, it does not represent a big drawback. Furthermore,
there are Mac computers available on campus that would allow us to develop the
mobile component on multiple machines if necessary.

